Защита от ультрафиолетового излучения. Реставрация и определение подлинности картины

Энергия Солнца представляет собой электромагнитные волны, которые подразделяются на несколько частей спектра:

  • рентгеновские лучи - с самой короткой длиной волны (ниже 2 нм);
  • длина волны ультрафиолетового излучения составляет от 2 до 400 нм;
  • видимая часть света, которая улавливается глазом человека и животных (400-750 нм);
  • теплое окислительное (свыше 750 нм).

Каждая часть находит свое применение и имеет большое значение в жизни планеты и всей ее биомассы. Мы же рассмотрим, что представляют собой лучи в диапазоне от 2 до 400 нм, где они используются и какую роль играют в жизни людей.

Это соответствует заявлению на фактор защиты от солнца в солнцезащитных кремах и указывает на то, что индивидуальное время защиты кожи от зависания кожи может быть увеличено текстильным материалом. Если такой человек незаметно расширяется от пылающего солнца, они рискуют опасным сарафаном. То есть, до 6, 5 - 13 часов.

Следует, однако, отметить, что все нетекстурированные участки тела также должны быть защищены солнцезащитным кремом. Как потребитель может оценить эту информацию? Такие заявления трудно интерпретировать для неспециалиста. Любой, кто хочет быть в безопасности при покупке затененных тканей, поэтому должен обязательно запрашивать критическую информацию, предоставленную информацию можно точно объяснить и сравнить с личными требованиями, которые, среди прочего, относятся к типу персональной кожи и к результату самозащиты результат.

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Это не учитывает нагрузки и напряжение во время использования и стирки. Сколько компаний измеряют в соответствии с этим методом тестирования? Ассортимент продукции варьируется от купальников до досуга и одежды для треккинга до тканей для спецодежды. Если вы хотите летом выходить на улицу и наслаждаться хорошей погодой, вам нужна адекватная защита от солнца. Солнцезащитный крем, солнцезащитный крем и солнцезащитные очки - без него. Но самое позднее, если у вас есть толстые солнцезащитные очки, несмотря на солнцезащитный козырек, вы будете уделять больше внимания этому предмету.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный света только при очень высоких температурах от 1500 до 2000 0 С. Именно в таком интервале УФ достигает пика активности по воздействию.

Инфракрасные лучи излучают видимые лучи и ультрафиолетовые лучи. . И чем короче струй, тем они здоровее. Он уже отфильтровывается в верхних слоях земной атмосферы и не достигает земной поверхности. Это приводит к раку кожи в долгосрочной перспективе. По данным Европейского фонда рака кожи, число людей, страдающих от рака кожи в Германии, ежегодно увеличивается на 7% до 10%.

Индивидуальный фактор защиты кожи

Ибо: рассказ солнца о человеке начинает наполняться в детстве. Чтобы предотвратить слишком быстрое заполнение солнечного контроля, необходимо обеспечить достаточную защиту от солнца как можно раньше. В этой таблице показано, сколько времени занимает собственное время защиты кожи.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах - от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны - 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны - 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

Кроме того, наиболее чувствительным типом кожи и максимальной интенсивностью излучения с австралийским пятном является изюминка лета. Поэтому эти ценности являются надежными и практичными. Это говорит вам, как долго вы можете сидеть под зонтиком без солнцезащитных очков.

За этим следует солнечный спектр Мельбурна, Австралия. В этом случае, однако, в качестве основы берется солнечный спектр Альбукерке, который примерно соответствует солнечной радиации в Южной Европе. Хотели бы вы регулярно получать информацию о новых вкладах нашего журнала на террасу? Тогда просто подпишитесь на наш бесплатный, который мы отправляем ежемесячно нашим клиентам.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Как защитить орган чувств соответственно

В частности, на больших высотах и ​​в южных районах страны, а также в период с 11 до 15 вы подвергаетесь интенсивному излучению.

Опасность плохих солнцезащитных очков

Однако редко приходится думать о том, охватывает ли он аспекты защиты от солнца. Жалобы, такие как блики, ощущение постороннего тела плюс покраснение, жжение и слезы в глазах могут быть результатом плохой пары солнцезащитных очков. Поскольку кожа может страдать от солнечных очков, это также может случиться с нашей роговицей. Например, темные очки автоматически не обеспечивают хорошую защиту.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа - для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Как распознать хорошие солнцезащитные очки

Напротив, чем темнее очки, тем более открыты зрачки. Солнцезащитные очки должны не только ослабить яркость, но и защитить от невидимого ультрафиолетового излучения. Браун и серые очки оказывают наименьшее влияние на визуальные впечатления. Во всех остальных случаях глаз нуждается в определенном времени реакции, чтобы снова нейтрализовать цвет. «Размер и форма солнцезащитных очков должны быть адаптированы к форме лица, чтобы глаза были защищены от случайных лучей», - говорит Маркус Гшвайдл. Итак, если вы носите пару ложных солнцезащитных очков, вы вредите, и особенно важно сосредоточиться на качестве.


Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя - Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Защитите глаза от детей

Австрийские оптики рады сообщить вам и помочь вам выбрать правильную модель. Особенно важна защита глаз у детей, поскольку проушины чувствительны и нуждаются в защите. В дополнение к возможным острым заболеваниям глаз ребенка в случае недостаточной защиты от солнца угрожает долговременному повреждению линзы и сетчатки. По этой причине дети должны носить солнцезащитные очки на солнце, а качество должно быть приоритетом при выборе правильной пары очков. Хорошие солнцезащитные очки должны быть свободны от полос и не должны искажаться.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты - исключительно его заслуга.

Специальные пластмассы выдерживают даже сильные удары, такие как крушение велосипеда, объясняет Маркус Гшвайдл. Дополнительная защита обеспечивается щитами, которые поступают сверху. В летние месяцы более интенсивное воздействие солнечных лучей является частью привычки, которая повторяется всякий раз, когда у дня есть ясный климат. Сильные дни жары, в которых температура достигает экстремальных значений, - это приглашение насладиться бассейном, рекой или морем. Выводит, что если не приняты меры предосторожности, это может привести к различным заболеваниям.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Существует важная осведомленность о по уходу за кожей и возможных последствиях ультрафиолетовых лучей. Помимо воздействия на поверхность тела, излучение может также приводить к различным повреждениям зрения. Проблемы с кумулятивным происхождением, которые с простыми мерами возможны, чтобы их избежать.

По своей природе человеческий глаз устойчив к легким повреждениям, но питание, генетика и возраст являются факторами уязвимости. Поскольку мы не думаем идти на пляж, не защищая нашу кожу, мы не должны думать о том, чтобы подвергать себя солнцу, не защищая наши глаза.


Следующие источники - это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

Ношение солнечной шляпы и солнцезащитных очков снижает частоту радиации на глазах до 90 процентов. Тем не менее, аргентинский совет офтальмологии предупреждает, что не все солнцезащитные очки, купленные на улице, способны защитить глаза, поскольку они увеличивают прохождение радиации к глазам, вызывая поражения в глазном яблоке.

Будучи темными, но не имеющими ультрафиолетовых фильтров, линзы создают эффект темной камеры, который расширяет зрачок и заставляет больше радиации проникать в глаз, повреждая его и вызывая зрительные проблемы. Выберите установки объемного звучания, чтобы лучи не могли входить вбок.

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников - лазеры. Их работа основана на генерации различных газов - как инертных, так и нет. Источниками могут быть:

Знайте, что солнце вредно в течение всего года, не только летом. Будьте осторожны в полдень и время сна. Кроме того, темные очки не обязательно обеспечивают большую защиту. Ультрафиолетовое излучение глаз: проблема и решения. Окулярная фототоксичность: рекомендации по выбору солнцезащитных очков.

Ультрафиолетовое излучение и кожный канцерогенез. Ультрафиолетовое излучение и глаз: эпидемиологическое исследование. Как разные длины волны ультрафиолетового спектра вносят вклад в канцерогенез кожи: роль ответных реакций на клетки. Ультрафиолетовое излучение: как оно влияет на жизнь на Земле. Мутации: что это такое, их причины и последствия - обзор.

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Исследовательский надзор за определением карциномы и основных факторов, влияющих на личность, в том числе на латышском языке, на открытом воздухе, на открытом воздухе. Как свет достигает глаз и его компонентов. Дифференциальные механизмы индуцирования конъюнктивальной клеточной гибели ультрафиолетовым облучением и хлорид бензалкония.

Внешние факторы в развитии катаракты. Солнце, глаз, офтальмохелиозы и лентовое контактирование. Семейство заболеваний глаз, связанных с солнечным светом. Долгосрочные эффекты видимого света на глаз. Солнечное излучение и глаз: обзор знаний, относящихся к уходу за глазами. Связь между пингвикулой, солнечным светом и катарактой.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Правила применения защитных средств

Ультрафиолетовая флуоресцентная фотография для обнаружения раннего повреждения солнца в глазах детей школьного возраста. Птеригиум: распространенность, демография и факторы риска. Современные концепции и методы лечения птеригием. Анализ риска развития птеригии. Роль ультрафиолетового облучения и связывающего гепарин фактора роста эпидермального фактора роста в патогенезе птеригиума.

Эпидемиология птеригиума в штате Виктория, Австралия. Повреждение роговицы при фотокератите - почему это так больно? Признанные оценки риска для катаракты для определения приоритетности действий в области здравоохранения и общественного здравоохранения. Оценка факторов риска в возрастной макулярной дегенерации. Является ли связанная с возрастом макулярная дегенерация связанной с образованием пингеккулы или склеральной бляшки?

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.


Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

Как защитить ребенка от солнца?

Видимый свет и риск возрастной макулярной дегенерации. Обзор: роль ультрафиолетового излучения в возрастной макулярной дегенерации. Почему дети должны носить солнцезащитные очки. Когда солнце является трудоемким, работодатель должен применять административные, инженерные или индивидуальные меры защиты для снижения риска для здоровья.

По словам Института общественного здравоохранения, защитные очки, используемые в работах на открытом воздухе в горнодобывающей, лесной, рыболовной и строительной отраслях, должны иметь защиту от солнечного ультрафиолетового излучения. Защита глаз в настоящее время импортируется по австралийским, американским или европейским стандартам, однако в стране нет сертифицированной лаборатории для сертификации этого продукта.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника - как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Воздействие солнечного ультрафиолетового излучения является бесшумной проблемой, потому что оно не видно и не накапливается в теле. В мире считается, что около 20% слепоты могут быть вызваны или усугублялись воздействием солнца. Это может также вызвать покраснение кожи, преждевременное старение и даже рак кожи.

Этот показатель стал важной поддержкой кампаний по поощрению и предотвращению чрезмерного воздействия ультрафиолетовой солнечной радиации и как способ предупредить о защитных мерах, которые необходимо принять. В древние времена эскимосы использовали линзы, чтобы уменьшить угол падения солнечных лучей в глазах и, таким образом, защитить себя.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.


Спектрометрия - основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях - специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы - бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ - это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения - это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.


Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд - красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита - сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях - разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.


Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.

Защита от ультрафиолетового и инфракрасного излучений на производстве

Ультрафиолетовое излучение — это электромагнитные волны с длиной волны от 0,0136 до 0,4 мкм. Различают три участка спектра ультрафиолетового (УФ) излучения, имеющих различную биологическую активность. Ультрафиолетовое излучение с длиной волны 0,4...0,315 мкм имеет слабое биологическое воздействие. УФ-лучи в диапазоне 0,3154...0,28 мкм оказывают сильное воздействие на кожу и обладают противорахитичным действием. УФ-излучения с длиной волны 0,28...0,2 мкм обладают бактерицидным действием.


Избыток и недостаток этого вида излучения представляет опасность для организма человека. Воздействие на кожу больших доз УФ-излучений вызывает кожные заболевания — дерматиты. Пораженный участок имеет отечность, ощущается жжение, зуд. При воздействии повышенных доз УФ-излучения на центральную нервную систему характерны следующие симптомы заболеваний: головная боль, тошнота, головокружение, повышенная температура тела, повышенная утомляемость, нервное возбуждение и т.д.


УФ-лучи с длиной волны менее 0,32 мкм, действуя на глаза, вызывают заболевание, называемое электроофтальмией. Человек уже на начальной стадии этого заболевания ощущает резкую боль и «песок в глазах», ухудшение зрения, головную боль. Заболевание сопровождается обильным слезотечением, а иногда светобоязнью и поражение роговицы. Оно быстро проходит (через 1...2 дня), если не продолжается воздействие УФ-излучения.


При нормировании допустимых доз УФ-излучения учитывается необходимость ограничений при воздействии больших интенсивных доз и в то же время обеспечения необходимых доз для предотвращения «ультрафиолетовой недостаточности».


Оценка УФ-облучения производится по величине эритемной дозы. За единицу эритемной дозы принят 1 эр, равный 1 Вт мощности УФ-излучения с длиной волны 0,297 мкм. Для профилактики достаточна приблизительно десятая часть эритемной дозы (60...90 мкэрмин/см2).


Источниками УФ-излучений являются: электрическая дуга, автогенная сварка, плазменная резка и напыление, лазерные установки, газоразрядные лампы, ртутно-кварцевые лампы, радиолампы, ртутные выпрямители и др.


Для защиты от ультрафиолетового излучения применяются коллективные и индивидуальные способы и средства: экранирование источников излучения и рабочих мест; удаление обслуживающего персонала от источников ультрафиолетового излучения (защита расстоянием — дистанционное управление); рациональное размещение рабочих мест; специальная окраска помещений; СИЗ и предохранительные средства (пасты и мази).


Для экранирования рабочих мест применяют ширмы, щитки, или специальные кабины. Стены и ширмы окрашивают в светлые тона (серый, желтый, голубой), применяют цинковые и титановые белила для поглощения ультрафиолетового излучения.


К СИЗ от ультрафиолетовых излучений относятся: термозащитная спецодежда; рукавицы; спецобувь; защитные каски; защитные очки и щитки со светофильтрами.


Измерение интенсивности и спектра УФ-излучений производится с помощью УФ-дозиметров и инфракрасных спектрометров ИКС-10, ИКС-12, ИКС-14.


Для инфракрасного излучения характерны электромагнитные волны с длиной волны в пределах 0,76...420 мкм. Оно генерируется любым нагретым телом, температура которого определяет интенсивность и спектр излучаемой электромагнитной энергии. Нагретые тела, имеющие температуру выше 100 °С, являются источниками коротковолнового инфракрасного излучения (0,7...9 мкм). С уменьшением температуры нагретого тела (50... 100 °С) инфракрасное излучение характеризуется в основном длинноволновым спектром.


Источником инфракрасных излучений в производственных условиях являются: открытое пламя; расплавленный и нагретый металл, материалы; нагретые поверхности стен, оборудования; источники искусственного освещения, различные виды сварки и др.


В зависимости от длины волны изменяется проникающая способность инфракрасного излучения. Наибольшую проникающую способность имеет коротковолновое инфракрасное излучение (0,76... 1,4 мкм); инфракрасные лучи длинноволнового диапазона задерживаются в поверхностных слоях кожи.


Большая проникающая способность коротковолнового излучения вызывает непосредственное воздействие на жизненно важные органы человека (мозговые оболочки, мозговую ткань и др.), поэтому существует опасность его воздействия вплоть до «солнечного удара».


При воздействии на глаза наибольшую опасность представляет коротковолновое излучение. Возможное последствие — появление инфракрасной катаракты.


Потенциальная опасность облучения оценивается по величине плотности потока энергии инфракрасного излучения. Эту же величину используют для нормирования допустимой облученности на рабочих местах, которая не должна превышать 350 Вт/м. При этом ограничивается температура нагретых поверхностей. Если температура источника тепла не превышает 373 К (100°С), то поверхность оборудования должна иметь температуру не более 308 К (35 °С), а при температуре источника выше 373 К (100°С) — не более 318 К (45°С).


Основные мероприятия, направленные на снижение опасности воздействия инфракрасного излучения, состоят в следующем: снижение интенсивности источника, защитное экранирование источника или рабочего места, использование СИЗ, лечебно-профилактические мероприятия.


Снижение интенсивности инфракрасного излучения источника достигается выбором технологического оборудования, обеспечивающего минимальные излучения; заменой устаревших технологических схем современными (например, замена пламенных печей на электрические); рациональной компоновкой оборудования, с помощью которой обеспечивается минимум нагретых поверхностей.


Наиболее распространенные средства защиты от инфракрасного излучения, классифицируемые ГОСТ 12.4.123—83: оградительные, герметизирующие, теплоизолирующие, средства вентиляции, а также средства автоматического контроля и сигнализации.


Примером оградительных устройств являются конструкции, состоящие из одной или нескольких полированных отражающих пластин, охлаждаемых естественным или принудительным способом.


Локализация (герметизация) источников инфракрасного излучения осуществляется с помощью экранов из металлического листа; укрывающего набора труб, по которым под напором движется вода; сварных заслонок, футерованных огнеупорными материалами (асбест, вермикулитовые или перлитовые плиты и др.).


Средства индивидуальной защиты предназначаются для защиты глаз, лица и тела.


Для защиты глаз и лица используются очки со светофильтрами и щитки.


Защита поверхности тела от переоблучения инфракрасными электромагнитными волнами осуществляется с помощью спецодежды, вид которой зависит от специфики выполняемых работ (для сварщика при высокой температуре окружающего воздуха — из полульняной пропитанной парусины; при нормальных метеоусловиях или пониженной температуре окружающей среды — из льняной пропитанной парусины).


Лечебно-профилактические мероприятия предусматривают организацию рационального режима труда и отдыха и организацию регулярных периодических медосмотров.


Длительность и частота перерывов определяется с учетом интенсивности излучения и тяжести работ. Отдых происходит в специально оборудованных местах, где обеспечиваются благоприятные метеорологические условия. Регламентируется также длительность разового облучения.


Как уже сказано, при осуществлении сварочных работ, газовой и плазменной резке, в процессе работы у металлургических, стекловаренных и нагревательных печей, у прокатных станов, ковочных прессов, а также в условиях интенсивной солнечной радиации необходимо использовать средства защиты глаз.


В качестве экранов используются стеклянные светофильтры: круглые и прямоугольные — для защитных очков, прямоугольные — для щитков. Светофильтры изготавливают из темного (ТС) и синего (СС) стекла.


Тип светофильтра, который необходимо применять в конкретных условиях работы, определяется в зависимости от свойств пропускания и оптической плотности светофильтра для различных участков спектра электромагнитных волн. Учитывая, что практически оценка фактических условий облучения электромагнитными волнами является трудоемким процессом, рекомендуется выбор марки светофильтра производить на основе оценки косвенных показателей (например, силы тока, расхода ацетилена, кислорода и др.).


Для электрогазосварочных и вспомогательных работ рекомендуется использование светофильтров из темного стекла, марка которого определяется в зависимости от условий работ. Так, для работ на открытых площадках при интенсивной солнечной радиации рекомендованы светофильтры В-1. Эти светофильтры и светофильтры В-2 необходимо использовать при вспомогательных электросварочных работах в помещении. Светофильтры В-3 и Г-1 необходимо применять при газовой сварке и для вспомогательных работ на открытых площадках при электросварке. Для газосварщиков рекомендованы светофильтры Г-2 и Г-3, которые используются соответственно при сварке и резке средней и большой мощности.


Светофильтры Э-1, Э-2, Э-3, Э-4, Э-5 должны использоваться электросварщиками при силе тока 30...75 А, 75...200 А, 200...400 А, 400...500 А и свыше 500 А соответственно.


Дуговые методы электросварки также характеризуются различными спектром и интенсивностью электромагнитного излучения, зависящими от используемых материалов и режима сварки.



Для производства работ с помощью газовой сварки и кислородной резки рекомендуются светофильтры из темного стекла, марка которых будет зависеть от расхода ацетилена и кислорода. Например, при расходе ацетилена или кислорода, соответственно 70...200 л/ч и 900...2000 л/ч рекомендуется светофильтр С-2. В других случаях применяются светофильтры марок С-1, С-3, С-4.


Для прокатных, плавильных и других подобных работ рекомендуются следующие светофильтры из темного и синего стекла: СМ, М — для работ у плавильных печей при температуре наблюдаемой поверхности 1500°С и 1500...1800°С соответственно; НКП, Д-1 — для работ у нагревательных печей, кузнечных горнов, прокатных станов; П-1, П-2, П-3 — для работ у плавильных печей (кроме доменных) при температуре наблюдаемых поверхностей до 1200°С, 1200...1500°С соответственно.


Работа у доменных печей должна производиться с использованием светофильтров Д-2 и Д-3.