Пдк остаточного хлора в сточной воде. Качественные показатели питьевой воды

Экспресс диагностические тест-полоски для определения

нитритов в воде

"Биосенсор-Аква-Нитрит"

(питьевой, аквариумной, водоемов и др.)

Срок годности - 2 года

Нитриты

Нитриты - промежуточная ступень в цепи бактериальных процессов окисления аммония до нитратов или, напротив, восстановления нитратов до азота и аммиака. Подобные окислительно-восстановительные реакции характерны для станций аэрации, систем водоснабжения и природных вод. Наибольшие концентрации нитритов в воде наблюдается летом, что связано с деятельностью некоторых микроорганизмов и водорослей.

Анализ воды на нитриты делается для вод поверхностных и приповерхностных водотоков. Проверять содержание нитритов в воде особенно важно при анализе воды из колодцев и родников.

Нитриты могут применяться в промышленности как консерванты и ингибиторы коррозии. Из сточных вод они могут попадать в открытые водотоки.

Повышенное содержание нитритов указывает на усиление процессов разложения органических веществ в условиях медленного окисления NO2- в NO3-, это указывает на загрязнение водоема. Содержание нитритов является важным санитарным показателем.

ПДК нитритов в воде согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 3 мг/дм 3 . Нитриты значительно опаснее нитратов, поэтому их содержание в воде контролируется более строго (ПДК нитратов 45 мг/дм 3)

Влияние нитритов и нитратов питьевой воды на здоровье населения.

Кислородсодержащие неорганические соединения азота в настоящее время привлекают к себе особое внимание. Это связано с тем, что увеличение применения азотистых веществ в промышленности и сельском хозяйстве привело к возрастанию уровня кислородсодержащих соединений азота в почве в виде нитратов, нитритов и солей аммония, что стало причиной ряда заболеваний среди людей и животных.

В воде подземных источников встречаются нитриты и нитраты почвенного происхождения. Особенно это касается источников нецентрализованного водоснабжения, например шахтных колодцев. Нитриты более токсичны, чем нитраты, но в обычных условиях нитриты очень нестойкие вещества: окисляясь, они быстро переходят в нитраты. В хлорированной питьевой воде содержание нитритов часто ниже пределов обнаружения. Нитраты, как более устойчивые соединения имеют гигиенический норматив в питьевой воде на уровне 45 мг/л.

Нитриты и нитраты могут поступать в организм, как с водой, так и с продуктами питания, в основном растительного происхождения, в которых они депонируются. Воздействие данных соединений на организм проявляется в изменении работы сердечно-сосудистой и выделительной систем, а также органов желудочно-кишечного тракта.

В организме нитраты под воздействием кишечной микрофлоры восстанавливаются до нитритов. Нитриты в свою очередь, соединяясь с гемоглобином, образуют стойкое соединение метгемоглобин, в результате резко снижается его способность к транспорту кислорода и наступает гипоксия тканей. Развивается заболевание, именуемое нитратной метгемоглобинемией. У заболевших нитратной метгемоглобинемией наблюдается предшествующие этому состоянию снижение кислотности желудочного сока и развитие диспепсических явлений.

Нитраты могут поступать в водоисточники со сточными водами городов и при смыве азотных удобрений с сельскохозяйственных полей. Нитраты практически не удаляются из воды во время обработки её на водопроводных станциях.

Есть еще одна сторона поведения нитросоединений в организме. Нитраты, как отмечалось выше довольно легко превращаются в нитриты, те в свою очередь, соединяются с поступающими вместе с пищей аминами и амидами. В результате образуются нитрозамины с выраженными канцерогенными свойствами. Этот процесс активно протекает при нормальной кислотности в желудке. Нитразамины оказывают также токсическое действие на печень, а некоторые из них обладают мутагенными и тератогенными свойствами.

Одним из наиболее эффективных способов профилактики неблагоприятного действия нитратов на человека является их гигиеническое регламентирование в воде.

В разводящей сети г. Нижнего Тагила нитраты и нитриты содержатся в минимальных количествах. Однако, выявляется довольно большое количество проб, несоответствующих требованиям санитарных правил по содержанию нитратов6
- из источников нецентрализованного водоснабжения - в первую очередь родники и колодцы,

Из скважины (трубчатые колодцы)

Питьевая вода - это вода, пригодная к употреблению человеком и отвечающая критериям качества, то есть, - вода безопасная и приятная на вкус. В масштабах мирового сообщества критерии качества были утверждены Европейским сообществом и приняты каждой из стран. В Украине действует ГСанПиН 2.2.4-171-10

Физико-химические показатели качества воды

  • Активная реакция воды(pH) . Степень её кислотности или щёлочности - определяется концентрацией водородных ионов. Обычно выражается через рН - отрицательный логарифм концентрации ионов водорода. При рН = 7,0 реакция воды нейтральная, при рН<7,0 среда кислая, при рН>7,0 среда щелочная.

По нормам СанПиН рН питьевой воды должен быть в пределах 6,5…8,5

  • Жесткость воды . Совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой. Различают временную жёсткость, образованную гидрокарбонатами и постоянную жёсткость, вызванную присутствием других солей. Временная жёсткость может быть устранена кипячением.

По СанПиНу жесткость питьевой воды должна быть не выше 7,0 мг-экв/л

  • Щёлочность воды . Под общей щёлочностью воды подразумевается сумма содержащихся в ней гидратов и анионов слабых кислот (угольной, кремниевой, фосфорной и т.д.). В подавляющем большинстве случаев для подземных вод имеется в виду гидрокарбонатная щёлочность, то есть содержание в воде гидрокарбонатов.

По СанПиНу щелочность питьевой воды должна быть не выше 6,5 мг-экв/л

  • Хлориды . Присутствуют практически во всех водах. В основном их присутствие в воде связано с вымыванием из горных пород наиболее распространённой на Земле соли - хлорида натрия (поваренной соли). Повышенное содержание хлоридов в совокупности с присутствием в воде аммиака, нитритов и нитратов может свидетельствовать о загрязнённости бытовыми сточными водами.

ПДК хлоридов в воде питьевого качества - 250 мг/л

  • Сульфаты попадают в подземные воды в основном при растворении гипса, находящегося в пластах. Повышенное содержание сульфатов в воде приводит к расстройству желудка (тривиальные названия сульфата магния и сульфата натрия (солей, обладающих слабящим эффектом) - "английская соль" и "глауберова соль" соответственно).
  • Азотосодержащие вещества




Сульфаты попадают в подземные воды в основном при растворении гипса, находящегося в пластах. Повышенное содержание сульфатов в воде приводит к расстройству желудка (тривиальные названия сульфата магния и сульфата натрия (солей, обладающих слабящим эффектом) - "английская соль" и "глауберова соль" соответственно).

ПДК сульфатов в воде питьевого качества - 250 мг/л.

Азотосодержащие вещества (нитраты NO3-, нитриты NO2- и аммонийные соли NH4+) почти всегда присутствуют во всех водах, включая подземные, и свидетельствуют о наличии в воде органического вещества животного происхождения. Являются продуктами распада органических примесей, образуются в воде преимущественно в результате разложения мочевины и белков, поступающих в неё с бытовыми сточными водами. Рассматриваемая группа ионов находится в тесной взаимосвязи.

Первым продуктом распада является аммиак (аммонийный азот) - является показателем свежего фекального загрязнения и является продуктом распада белков. В природной воде ионы аммония окисляются бактериями Nitrosomonas и Nitrobacter до нитритов и нитратов. Нитриты являются лучшим показателем свежего фекального загрязнения воды, особенно при одновременном повышенным содержании аммиака и нитритов. Нитраты служат показателем более давнего органического фекального загрязнения воды. Недопустимо содержание нитратов вместе с аммиаком и нитратами.
По наличию, количеству и соотношению в воде азотсодержащих соединений можно судить о степени и давности заражения воды продуктами жизнедеятельности человека.

Отсутствие в воде аммиака и в то же время наличие нитритов и особенно нитратов, т.е. соединений азотной кислоты, свидетельствуют о том, что загрязнение водоема произошло давно, и вода подверглась самоочищению. Наличие в воде аммиака и отсутствие нитратов указывают на недавнее загрязнение воды органическими веществами. Следовательно, в питьевой воде не должно быть аммиака, не допускаются соединения азотной кислоты (нитриты).
Наличие иона аммония в концентрациях, превышающих фоновые значения, указывает на свежее загрязнение и близость источника загрязнения (коммунальные очистные сооружения, отстойники промышленных отходов, животноводческие фермы, скопления навоза, азотных удобрений, поселения и др.). Употребление воды с повышенным содержанием нитритов и нитратов приводит к нарушению окислительной функции крови.

По нормам СанПиН ПДК в воде амиака составляет 0,5 мг/л; нитритов - 0,5 мг/л; нитратов - 50,0 мг/л.

Фториды и йодиды. Фториды и йодиды в чём-то похожи. Оба элемента при недостатке или избытке в организме приводят к серьёзным заболеваниям. Для йода это - заболевания щитовидной железы ("зоб"), возникающие при суточном рационе менее 0,003 мг или более 0,01 мг. Для восполнения дефицита йода в организме возможно употребление йодированной соли, но лучший выход - это включение в рацион рыбы и морепродуктов. Особенно богата йодом морская капуста.
Недостаток фтора в воде приводит к кариесу, его избыток - к флюорозу ("пятнистая эмаль зубов"), рахиту и малокровию. Оптимальная доза фтора в питьевой воде составляет 0,7…1,2 мг/л. При пониженном содержание фтора в питьевой воде рекомендуется пользоваться зубной пастой с добавлением фтора. Фтор - один из немногих элементов, которые лучше усваиваются организмом из воды, хотя его можно получать и из ананасов.

Оптимальная доза фтора в питьевой воде составляет 0,7…1,2 мг/л.

Окисляемость обусловлена содержанием в воде органических веществ и отчасти может служить индикатором загрязнённости источника сточными водами. Различают окисляемость перманганатную и окисляемость бихроматную (или ХПК - химическая потребность в кислороде). Перманганатная окисляемость характеризует содержание легкоокисляемой органики, бихроматная - общее содержание органических веществ в воде. По количественному значению показателей и их отношению можно косвенно судить о природе органических веществ, присутствующих в воде, о пути и эффективности технологии очистки.
По СанПиНу окисляемость воды должна быть не выше 5,0 мг О2/л.

Общее солесодержание и сухой остаток характеризуют минерализацию (содержание растворенных солей в воде).
По СанПиН на питьевую воду, сухой остаток должен быть не более 1000 мг/л

Железо может встречаться в природных водах в следующих видах:

Истинно растворённом виде (двухвалентное железо, прозрачная бесцветная вода)

Нерастворённом виде (трёхвалентное железо, прозрачная вода с коричневато-бурым осадком или ярко выраженными хлопьями)

Коллоидном состоянии (окрашенная желтовато-коричневая опалесцирующая вода, осадок не выпадает даже при длительном отстаивании)

Железоорганика - соли железа и гуминовых и фульвокислот (прозрачная желтовато-коричневая вода)

Железобактерии (коричневая слизь на водопроводных трубах)
Марганец встречается в аналогичных модификациях. Повышенное содержание обоих элементов в воде вызывает потёки на сантехнике, окрашивает бельё при стирке и придаёт воде железистый или чернильный привкус. Длительное употребление такой воды для питья вызывает отложение указанных элементов в печени и по вредности значительно обгоняет алкоголизм.
ПДК в воде железа составляет 0,2 мг/л; марганца - 0,05 мг/л.
Сероводород, встречающийся в подземных водах, преимущественно неорганического происхождения. Он образуется в результате разложения сульфидов (пирит, серный колчедан) кислыми водами и восстановления сульфатов сульфатредуцирующими бактериями. Сероводород обладает резким неприятным запахом и является общеклеточным и каталитическим ядом. По этим причинам, а также вследствие интенсификации процессов коррозии, сероводород следует полностью удалять из воды хозяйственно-питьевого назначения (по ГОСТ "Вода питьевая").
Хлор появляется в питьевой воде в результате её обеззараживания. Сущность обеззараживающего действия хлора заключается в окислении или хлорировании (замещении) молекул веществ, входящих в состав цитоплазмы клеток бактерий, отчего бактерии гибнут. Очень чувствительны к хлору возбудители брюшного тифа, паратифов, дизентерии, холеры. Даже сильно заражённая бактериями вода в значительной мере дезинфицируется сравнительно малыми дозами хлора. Однако отдельные хлоррезистентные особи сохраняют жизнеспособность, поэтому полной стерилизации воды не происходит.
Ввиду того, что свободный хлор относится к числу вредных для здоровья веществ, гигиенические номы СанПиН строго регламентирует содержание остаточного свободного хлора в питьевой воде централизованного водоснабжения. При этом СанПиН устанавливает не только верхнюю границу допустимого содержания свободного остаточного хлора, но и минимально-допустимую границу. Дело в том, что, что несмотря на обеззараживание на станции водоочистки, готовую "товарную" питьевую воду подстерегает немало опасностей по пути к крану потребителя. Например, свищ в стальной подземной магистрали, сквозь которые не только магистральная вода попадает наружу, но и загрязнения из почвы могут попасть в магистраль.


Хлорированная вода неблагоприятно воздействует на кожу и слизистые оболочки, поскольку хлор является сильным аллергическим и токсическим веществом. Так, хлор вызывает покраснения различных участков кожи, а также становится причиной аллергического конъюктевита, первыми признаками которого являются жжение, слезотечение, отек век и другие болевые ощущения в области глаз. Дыхательная система также подвергается вредному воздействию: у 60% пловцов регистрируется проявление бронхоспазма после нескольких минут нахождения в бассейне с хлорированной водой.
Исследования показали, что около 10% хлора, используемого при хлорировании, участвует в образовании хлорсодержащих соединений. Приоритетными хлорсодержащими соединениями являются хлороформ, четырёххлористый углерод, дихлорэтан, трихлорэтан, тетрахлоэтилен. В сумме образующихся при водоподготовке ТГМ хлороформ составляет 70 - 90 %. Хлороформ вызывает профессиональные хронические отравления с преимущественным поражением печени и центральной нервной системы.
При хлорировании есть вероятность образования чрезвычайно токсичных соединений, тоже содержащих хлор, - диоксинов (диоксин в 68 тыс. раз ядовитее цианистого калия).
Хлорированная вода обладает высокой степенью токсичности и суммарной мутагенной активностью (СМА) химических загрязнений, что многократно увеличивает риск онкологических заболеваний.
По оценке американских экспертов, хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновны в 20 онкозаболеваниях на 1 млн. жителей. Риск онкозаболеваний при максимальном хлорировании воды достигает 470 случаев на 1 млн. жителей. Предполагается, что 20-35% случаев заболевания раком (преимущественно толстой кишки и мочевого пузыря) обусловлены потреблением питьевой воды.
Остаточный хлор (оставшийся в воде после обеззараживания) необходим для предотвращения возможного вторичного заражения воды во время прохождения по сети.
Содержание остаточного хлора в водопроводной воде должно быть не менее 0,3 мг/л и не более 0,5 мг/л.

Натрий и калий попадают в подземные воды за счёт растворения коренных пород. Основным источником натрия в природных водах являются залежи поваренной соли NaCl, образовавшиеся на месте древних морей. Калий встречается в водах реже, так как он лучше поглощается почвой и извлекается растениями.

Медь, цинк преимущественно попадают в источники водоснабжения со стоками промышленных вод. Медь и цинк могут также попадать при коррозии соответственно оцинкованных и медных водопроводных труб из-за повышенного содержания агрессивной углекислоты.
Все вышеперечисленные соединения относятся к тяжёлым металлам и обладают кумулятивным действием, то есть свойством накапливаться в организме и срабатывать при превышении определённой концентрации в организме.

ПДК в воде меди составляет 1,0 мг/л; цинка - 5,0 мг/л

Органолептические показатели

Любое знакомство со свойствами воды, сознаем мы это или нет, начинается с определения органолептических показателей, т.е. таких, для определения которых мы пользуемся нашими органами чувств (зрением, обонянием, вкусом). Органолептическая оценка приносит много прямой и косвенной информации о составе воды и может быть проведена быстро и без каких-либо приборов. К органолептическим характеристикам относятся цветность, мутность (прозрачность), запах, вкус и привкус.

Температура воды -поверхностных источников зависит от температуры воздуха, его влажности, скорости и характера движения воды и ряда других факторов. Она может изменяться в значительных пределах. Температура воды подземных источников относительно постоянна и составляет обычно 4-8 оС.

Оптимальной температурой воды для питьевых целей считается 7-11 оС.

Цветность воды - интенсивность окраски, выраженная по платиново-кобальтовой шкале. Один градус шкалы соответствует цвету 1 литра воды, окрашенного добавлением 1 мг соли - хлорплатината кобальта. Цветность воды подземных вод вызывается соединениями железа, реже - гумусовыми веществами (грунтовка, торфяники, мерзлотные воды); цветность поверхностных - цветением водоёмов.

По нормам на питьевую воду, цветность воды не должна быть выше 20 оС.

Мутность определяется содержанием в воде взвешенных веществ. Сравнивая при одинаковом освещении образец исследуемой воды и образцы дистиллированной воды, того же объёма, искусственно замутнённые определённым количеством стандартной взвеси, подбирают образец с наиболее подходящей концентрацией. Мутность может выражаться в миллиграммах на литр (мг/л), единицах мутности по формазину или единицах мутности NTU. Мутность воды подземных источников, как правило, невелика и обуславливается взвесью гидрооксида железа. В поверхностных водах мутность чаще обусловлена присутствием фито- и зоопланктона, глинистых или илистых частиц, поэтому величина зависит от времени паводка (межени) и меняется в течение года.

По нормам мутность питьевой воды должна быть не выше 1,5 мг/л.

Вкус вызывается наличием в воде растворенных веществ и может быть соленым, горьким, сладким и кислым . Природные воды обладают, как правило, только солоноватым и горьковатым привкусом. Солёный вкус вызывается содержанием хлорида натрия, горький - сульфата магния. Кислый вкус воде придаёт большое количество растворённой углекислоты. Вода может иметь также чернильный или железистый привкус, вызванный солями железа и марганца или вяжущий привкус, вызванный сульфатом кальция.

По нормам СанПиН привкус должен быть не более 2 баллов.

Запахи воды определяются живущими и отмершими организмами, растительными остатками, специфическими веществами, выделяемыми некоторыми водорослями и микроорганизмами, а также присутствием в воде растворенных газов - хлора, аммиака, сероводорода, меркаптанов или органических и хлорорганических загрязнений. Различают природный запахи: ароматический, болотный, гнилостный, древесный, землистый, плесневый, рыбный, травянистый, неопределённый и сероводородный . Запахи искусственного происхождения называют по определяющим их веществам: фенольный, хлорфенольный, нефтяной, смолистый и так далее. Интенсивность запаха измеряется органолептически по пятибалльной шкале:

0 баллов - запах и привкус не обнаруживается
1 балл - очень слабые запах или привкус (обнаруживает только опытный исследователь)
2 балла - слабые запах или привкус, привлекающие внимание неспециалиста
3 балла - заметные запах или привкус, легко обнаруживаемые и являющиеся причиной жалоб
4 балла - отчётливые запах или привкус, которые могут заставить воздержаться от употребления воды
5 баллов - настолько сильные запах или привкус, что вода для питья совершенно непригодна.

По нормам запах воды должен быть не более 2 баллов.

Алюминий (Al)
Алюминий — легкий серебристо-белый металл. Попадает в воду в первую очередь в процессе водоподготовки — в составе коагулянтов. При технологических нарушениях этого процесса может оставаться в воде. Иногда попадает в воду с промышленными стоками.

Избыток алюминия в воде приводит к повреждению центральной нервной системы.

Предельно допустимая концентрация алюминия по СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» — 0,5 мг/дм3.

Железо (Fe)
Железо поступает в воду при растворении горных пород. Железо может вымываться из них подземными водами. Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот. Насыщенными железом оказываются подземные воды в толщах юрских глин. В глинах много пирита FeS, и железо из него относительно легко переходит в воду.

Содержание железа в поверхностных пресных водах составляет десятые доли миллиграмма. Повышенное содержание железа наблюдается в болотных водах (единицы миллиграмм), где концентрация гумусовых веществ достаточно велика. Наибольшие же концентрации железа (до нескольких десятков миллиграмм в 1 дм3) наблюдаются в подземных водах с низкими значениями и низким содержанием, а в районах залегания сульфатных руд и зонах молодого вулканизма концентрации железа могут достигать даже сотен миллиграмм в 1 л воды. В поверхностных водах средней полосы России содержится от 0,1 до 1 мг/дм3 железа, в подземных водах содержание железа часто превышает 15-20 мг/дм3.

Значительные количества железа поступают в водоемы со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками. Очень важен анализ на содержание железа для сточных вод.

Концентрация железа в воде зависит от рН и содержания кислорода в воде. Железо в воде колодцев и скважин может находится как в окисленной, так и в востановленной форме, но при отстаивании воды всегда окисляется и может выпадать в осадок. Много железа растворено в кислых бескислородных подземных водах.

Анализ воды на железо необходим для самых разных типов воды — поверхностных природных вод, приповерхностных и глубинных подземных вод, сточных вод промышленных предприятий.

Содержащая железо вода (особенно подземная) сперва прозрачна и чиста на вид. Однако даже при непродолжительном контакте с кислородом воздуха железо окисляется, придавая воде желтовато-бурую окраску. Уже при концентрациях железа выше 0,3 мг/дм3 такая вода способна вызвать появление ржавых потеков на сантехнике и пятен на белье при стирке. При содержании железа выше 1 мг/дм3 вода становится мутной, окрашивается в желто-бурый цвет, у нее ощущается характерный металлический привкус. Все это делает такую воду практически неприемлемой как для технического, так и для питьевого применения.

В небольших количествах железо необходимо организму человека – оно входит в состав гемоглобина и придает крови красный цвет. Но слишком высокие концентрации железа в воде для человека вредны. Содержание железа в воде выше 1-2 мг/дм3 значительно ухудшает органолептические свойства, придавая ей неприятный вяжущий вкус. Железо увеличивает показатели цветности и мутности воды. ПДК железа в воде 0.3 мг/дм3 согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Марганец (Mn)
Марганец - химический элемент VII группы периодической системы элементов Д.И. Менделеева. Металл.

Марганец активизирует ряд ферментов, участвует в процессах дыхания, фотосинтеза, влияет на кроветворение и минеральный обмен. Недостаток марганца в почве вызывает у растений некрозы, хлорозы, пятнистости. При недостатке этого элемента в кормах животные отстают в росте и развитии, у них нарушается минеральный обмен, развивается анемия. На почвах, бедных марганцем (карбонатных и переизвесткованных), применяют марганцевые удобрения.

Для человека опасен как недостаток, так и переизбыток марганца. ПДК марганца в воде в России - 0,1 мг/дм3 (по СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»)

Кадмий (Cd)
Кадмий - химический элемент II группы периодической системы элементов Д.И. Менделеева; белый, блестящий, тяжёлый, мягкий, тягучий металл. Очень токсичный металл.

В природные воды кадмий поступает при выщелачивании почв, полиметаллических и медных руд, в результате разложения водных организмов, способных его накапливать. Соединения кадмия выносятся в поверхностные воды со сточными водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда химических предприятий (производство серной кислоты), гальванического производства, а также с шахтными водами. Понижение концентрации растворенных соединений кадмия происходит за счет процессов сорбции, выпадения в осадок гидроксида и карбоната кадмия и потребления их водными организмами.

Растворенные формы кадмия в природных водах представляют собой главным образом минеральные и органо-минеральные комплексы. Основной взвешенной формой кадмия являются его сорбированные соединения. Значительная часть кадмия может мигрировать в составе клеток гидробионтов.

Избыточное поступление кадмия в организм может приводить к анемии, поражению печени, кардиопатии, эмфиземе легких, остеопорозу, деформации скелета, развитию гипертонии. Наиболее важным в кадмиозе является поражение почек, выражающееся в дисфункции почечных канальцев и клубочков с замедлением канальцевой реабсорбции, протеинурией, глюкозурией, последующими аминоацидурией, фосфатурией. Избыток кадмия вызывает и усиливает дефицит Zn и Se. Воздействие на протяжении продолжительного времени может вызывать поражение почек и легких, ослабление костей.

Симптомы кадмиевого отравления: белок в моче, поражение центральной нервной системы, острые костные боли, дисфункция половых органов. Кадмий влияет на кровяное давление, может служить причиной образования камней в почках (в почках он накапливается особенно интенсивно). Опасность представляют все химические формы кадмия

ПДК кадмия в воде согласно СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» — 0,001 мг/дм3

Медь (Cu)
Медь - химический элемент I группы периодической системы элементов Д.И. Менделеева; мягкий, ковкий металл красного цвета. Среди многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты, хлориды, известны также самородная медь, карбонаты и окислы.
Медь поступает в воздух с выбросами металлургических производств. В выбросах твердых веществ она содержится в основном в виде соединений, преимущественно оксида меди. На долю предприятий цветной металлургии приходится 98,7% всех антропогенных выбросов этого металла. Приносимая в океан со стоком медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы несколько обогащены медью, а морская вода резко ненасыщенна.

Медь относится к веществам 3-го класса опасности. Предельно допустимые концентрации меди в питьевой воде составляют 1,0 мг/дм3.

Медь - важный элемент жизни, она участвует во многих физиологических процессах. Среднее содержание меди в живом веществе 2*10-4%. Увеличение содержания меди в крови приводит к превращению минеральных соединений железа в органические, стимулирует использование накопленного в печени железа при синтезе гемоглобина.

Растворимые соединения меди ядовиты. Поэтому предметы хозяйственного обихода - самовары, чайники, кастрюли и т. д., сделанные из меди, покрывают внутри слоем олова - лудят, защищая медь от растворения и предупреждая возможность пищевых отравлений. Хроническая интоксикация медью и ее солями может приводить к функциональным расстройствам нервной системы, печени и почек, изъязвлению и перфорации носовой перегородки, аллергодерматозам.

Мышьяк (As)
Мышьяк — один из самых известных ядов. Это металл, токсичный для большинства живых существ. При отравлении мышьяком поражается центральная и периферическая нервная система, кожа, периферическая сосудистая система.

Неорганический мышьяк более опасен, чем органический, трехвалентный более опасен, чем пятивалентный. Главным источником мышьяка в воде являются промышленные стоки.
Предельно допустимая концентрация (ПДК) мышьяка в воде — 0,05 мг/дм3 (по СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества»). Такая величина отражает очень высокую токсичность мышьяка.

Ртуть (Hg)
Ртуть — в обычных условиях — жидкий, летучий металл. Очень опасное и токсичное вещество. ПДК ртути в воде — всего 0,0005 мг/дм3.

Ртуть поражает центральную нервную систему, особенно у детей, кровь, почки, вызывает нарушение репродуктивной функции. Особенно опасна метилртуть — металл-органическое соединение, образующиеся в воде при наличии ртути. Метилртуть очень легко всасывается тканями организма и очень долго из него выводится.

Практически все загрязнение воды ртутью имеет искусственное происхождение — ртуть попадает в природные водотоки из сточных вод промышленных производств.
Свинец (Pb)
Свинец - химический элемент IV группы периодической системы элементов Д.И. Менделеева; тяжёлый металл голубовато-серого цвета, очень пластичный, мягкий.

Концентрация свинца в природных водах обычно не превышает 10 мкг/л, что обусловлено его осаждением и комплексообразованием с органическими и неорганическими лигандами; интенсивность этих процессов во многом зависит от рН. ПДК свинца в питьевой воде составляет: для стран ЕС - 0,05 мг/дм3, для России - 0,03 мг/дм3.

Анализ воды на свинец важен для поверхностных вод питьевых и сточных вод. Необходимо проверить воду на содержание свинца, если есть подозрения в попадании в водоток промышленных стоков.

Для всех регионов России свинец - основной антропогенный токсичный элемент из группы тяжелых металлов, что связано с высоким индустриальным загрязнением и выбросами автомобильного транспорта, работающего на этилированном бензине. Свинец накапливается в теле, костях и поверхностных тканях. Свинец влияет на почки, печень, нервную систему и органы кровообразования. Пожилые и дети особенно чувствительны даже к низким дозам свинца.

Кальций (Ca)
Кальций в природе встречается только в виде соединений. Самые распространенные минералы — диопсид, алюмосиликаты, кальцит, доломит, гипс. Продукты выветривания минералов кальция всегда присутствуют в почве и природных водах. Растворению способствуют микробиологические процессы разложения органических веществ, сопровождающиеся понижением водородного показателя.

Большие количества кальция выносятся со сточными водами силикатной, металлургической, химической промышленности и со стоками сельскохозяйственных предприятий и особенно при использовании кальцийсодержащих минеральных удобрений.

Характерной особенностью кальция является склонность образовывать в поверхностных водах довольно устойчивые пересыщенные растворы СаСО3. Известны достаточно устойчивые комплексные соединения кальция с органическими веществами, содержащимися в воде. В маломинерализованных окрашенных водах до 90-100% ионов кальция могут быть связаны гумусовыми кислотами.

В речных водах содержание кальция редко превышает 1 г/л. Обычно же его концентрация значительно ниже.

Концентрация кальция в поверхностных водах имеет заметные сезонные колебания: весной содержание ионов кальция повышено, что связано с легкостью выщелачивания растворимых солей кальция из поверхностного слоя почв и пород.

Кальций важен для всех форм жизни. В человеческом организме входит в состав костной, мышечной ткани и крови. Масса кальция, содержащегося в организме человека, превышает 1 кг, из них 980 г сосредоточено в составе скелета. Длительное употребление в пищу воды с повышенным содержанием солей кальция может вызывать у людей мочекаменную болезнь, склероз и гипертонию. Дефицит кальция вызывает деформацию костей у взрослых и рахит у детей.

Жесткие требования предъявляются к содержанию кальция в водах, питающих паросиловые установки, так как в присутствии карбонатов, сульфатов и ряда других анионов кальций образует прочную накипь. Данные о содержании кальция в воде необходимы так же при решении вопросов, связанных с формированием химического состава природных вод, их происхождением, а так же при исследовании карбонатно-кальциевого равновесия.

ПДК кальция согласно нормативам физиологической полноценности питьевой воды по СанПиН 2.1.4.1116-02. «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» находится в диапазоне 25- 130 мг/дм3.

Магний (Mg)
Продукты выветривания минералов магния (таких как оливин, серпентин, магнезит, доломит) всегда присутствуют в почве и природных водах в виде нерастворимых карбонатов. Значительные количества магния могут поступать в природные водотоки со сточными водами металлургических, силикатных, текстильных и других предприятий.

В речных водах содержание магния обычно колеблется от нескольких единиц до десятков миллиграммов в 1 литре. Содержание магния в поверхностных водах меняется в течение года, значительно снижаясь в период половодья.

Катион магния активирует в организме человека ферменты, участвующие в переносе фосфатных групп, синтезе и распаде АТФ, превращении многих витаминов, в частности В6, в активные коферменты. Магний чрезвычайно важен для нормального функционирования нервной системы. Дефицит магния снижает устойчивость организма к инфекциям, стрессовым ситуациям и острым нарушениям мозгового кровообращения. Содержание магния в организме взрослого человека около 20 г. Но и превышение предельно допустимых концентраций магния в воде вредно. Нормативы физиологической полноценности питьевой воды в соответствии с СанПиН 2.1.4.1116-02. «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» рекомендуют концентрацию магния в диапазоне 5-65 мг/дм3

Натрий (Na)
Натрий является одним из главных компонентов химического состава природных вод, определяющих их тип.

Основным источником поступления натрия в поверхностные воды суши являются изверженные и осадочные породы и самородные растворимые хлористые, сернокислые и углекислые соли натрия. Большое значение имеют и биологические процессы, в результате которых образуются растворимые соединения натрия. Кроме того, натрий поступает в природные воды с хозяйственно-бытовыми и промышленными сточными водами и с водами, сбрасываемыми с орошаемых полей.

В поверхностных водах натрий мигрирует преимущественно в растворенном состоянии. Концентрация его в речных водах колеблется от 0,6 до 300 мг/3 в зависимости от физико-географических условий и геологических особенностей водных объектов. В поземных водах концентрация натрия колеблется в широких пределах — от миллиграммов до десятков граммов в 1 литре. Это определяется глубиной залегания подземных вод и другими условиями гидрогеологической обстановки.

Биологическая роль натрия крайне важна для большинства форм жизни на Земле, включая человека. Организм человека содержит около 100 г натрия. Ионы натрия активируют ферментативный обмен в организме человека. Избыточное содержание натрия в воде и пище приводит к гипертензии и гипертонии.

ПДК натрия согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников». составляет 200 мг/дм3.

Калий (K)
Калий - химический элемент I группы периодической системы элементов Д.И. Менделеева; серебряно-белый, очень лёгкий, мягкий и легкоплавкий металл.

Калий входит в состав полевых шпатов и слюд. На земной поверхности калий, в отличие от натрия, мигрирует слабо. При выветривании горных пород калий частично переходит в воды, но оттуда его быстро захватывают организмы и поглощают глины, поэтому воды рек бедны калием и в океан его поступает много меньше, чем натрия.

Отличительная особенность калия - его способность вызывать усиленное выведение воды из организма. Поэтому пищевые рационы с повышенным содержанием элемента облегчают функционирование сердечно-сосудистой системы при ее недостаточности, обусловливают исчезновение или существенное уменьшение отеков. Дефицит калия в организме ведет к нарушению функции нервно-мышечной (парезы и параличи) и сердечно-сосудистой систем и проявляется депрессией, дискоординацией движений, мышечной гипотонией, гипорефлек-сией, судорогами, артериальной гипотонией, брадикардией, изменениями на ЭКГ, нефритами, энтеритами и др.

ПДК калия согласно нормативам физиологической полноценности питьевой воды в соответствии с СанПиН 2.1.4.1116-02. «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества» составляет 20 мг/дм3

Нитраты (+NO3)
Загрязнение воды нитратами может быть обусловлено как природными, так и антропогенными причинами. В результате деятельности бактерий в водоемах аммонийные ионы могут переходить в нитрат-ионы, кроме того, во время гроз некоторое количество нитратов возникает при электрических разрядах – молниях.

Основными антропогенными источниками поступления нитратов в воду являются сброс хозяйственно-бытовых сточных вод и сток с полей, на которых применяются нитратные удобрения.

Наибольшие концентрации нитратов обнаруживаются в поверхностных и приповерхностных подземных водах, наименьшие – в глубоких скважинах. Очень важно проверять на содержание нитратов воду из колодцев, родников, водопроводную воду, особенно в районах с развитым сельским хозяйством. ГИЦ ПВ обязательно делается анализ воды на нитраты, если эта вода получена из поверхностных или приповерхностных источников — рек, ручьев, колодцев.

Повышенное содержание нитратов в поверхностных водоемах ведет к их зарастанию, азот, как биогенный элемент, способствует росту водорослей и бактерий. Это называется процессом эвтрофикации. Процесс этот весьма опасен для водоемов, так как последующее разложение биомассы растений израсходует весь кислород в воде, что, в свою очередь, приведет к гибели фауны водоема.

Опасны нитраты и для человека. Различают первичную токсичность собственно нитрат-иона; вторичную, связанную с образованием нитрит-иона, и третичную, обусловленную образованием из нитритов и аминов нитрозаминов. Смертельная доза нитратов для человека составляет 8-15 г. При длительном употреблении питьевой воды и пищевых продуктов, содержащих значительные количества нитратов, возрастает концентрация метгемоглобина в крови. Снижается способность крови к переносу кислорода, что ведет к неблагоприятным последствиям для организма.

ПДК нитратов в воде согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 45 мг/дм3

Нитриты (+NO2)
Нитриты — промежуточная ступень в цепи бактериальных процессов окисления аммония до нитратов или, напротив, восстановления нитратов до азота и аммиака. Подобные окислительно-восстановительные реакции характерны для станций аэрации, систем водоснабжения и природных вод. Наибольшие концентрации нитритов в воде наблюдается летом, что связано с деятельностью некоторых микроорганизмов и водорослей.

Анализ воды на нитриты делается для вод поверхностных и приповерхностных водотоков. Проверять содержание нитритов в воде особенно важно при анализе воды из колодцев и родников.

Нитриты могут применяться в промышленности как консерванты и ингибиторы коррозии. Из сточных вод они могут попадать в открытые водотоки.

Повышенное содержание нитритов указывает на усиление процессов разложения органических веществ в условиях медленного окисления NO2- в NO3-, это указывает на загрязнение водоема. Содержание нитритов является важным санитарным показателем.

ПДК нитритов в воде согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 3 мг/дм3. Нитриты значительно опаснее нитратов, поэтому их содержание в воде контролируется более строго (ПДК нитратов 45 мг/дм3)

Щелочность
Под щелочностью воды обычно понимают сумму гидратов и анионов слабых кислот, содержащихся в воде. Часто щелочность определяется только ангидридом угольной кислоты (ввиду ее значительной концентрации).

Вклад ионов фосфорной, кремниевой, сероводородной и органической кислот в общую щелочность воды незначителен.
Определение щелочности необходимо для контроля качества питьевой воды, полезно для определения воды как пригодной для полива, для расчета содержания карбонатов, для последующей очистки сточных вод.

ПДК по щелочности согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 4,4 ммоль/дм3

Гидрокарбонаты
Гидрокарбонаты - кислые соли угольной кислоты H2CO3 (содержат анион HCO3-). В противоположность большинству карбонатов все гидрокарбонаты в воде растворимы. Гидрокарбонат кальция Са (НСО3)2 обусловливает временную жёсткость воды. В организме гидрокарбонаты выполняют важную физиологическую роль, являясь буферными веществами, регулирующими постоянство реакции крови. Нормативы рекомендуют концентрацию гидрокарбонатов в питьевой воде в диапазоне 30-400 мг/дм3

Жесткость воды
Жесткость воды – содержание в ней растворенных солей кальция и магния. Суммарное содержание этих солей называют общей жесткостью. Общая жесткость воды подразделяется на карбонатную, обусловленную концентрацией гидрокарбонатов (и карбонатов при рН 8,3) кальция и магния, и некарбонатную — концентрацию в воде кальциевых и магниевых солей сильных кислот. Поскольку при кипячении воды гидрокарбонаты переходят в карбонаты и выпадают в осадок, карбонатную жесткость называют временной или устранимой. Остающаяся после кипячения жесткость называется постоянной. Результаты определения жесткости воды выражают в мг-экв/дм3 (в настоящее время чаще применяют градусы жесткости оЖ численно равные мг-экв/дм3). Временная или карбонатная жесткость может доходить до 70-80% общей жесткости воды.

Жесткость воды формируется в результате растворения горных пород, содержащих кальций и магний. Преобладает кальциевая жесткость, обусловленная растворением известняка и мела, однако в районах, где больше доломита, чем известняка, может преобладать и магниевая жесткость.

Анализ воды на жесткость имеет значение в первую очередь для подземных вод разной глубины залегания и для вод поверхностных водотоков, берущих начало из родников. Важно знать жесткость воды в районах, где есть выходы карбонатных пород, в первую очередь известняков.

Высокой жесткостью обладаю морские и океанические воды. Высокая жесткость воды ухудшает органолептические свойства воды, придавая ей горьковатый вкус и оказывая негативное действие на органы пищеварения. Именно жесткость вызывает образование накипи в чайниках и других устройствах кипячения воды.

Величина общей жесткости в питьевой воде не должна превышать 10,0 оЖ. Особые требования предъявляются к технической воде для различных производств, так как накипь может выводить технику из строя.

Проверить воду на жесткость необходимо перед её использованием в любых технических агрегатах, связаных с нагревом и кипением воды. Не спешите покупать фильтр, чтобы снизить жесткость воды, может быть она и так в пределах нормы. В Московском регионе жесткость воды колодцев и скважин колеблется в довольно широком диапазоне — от физиологической нормы 3-4 оЖ до 20,0 оЖ, что существенно больше ПДК. Проверка водопроводной воды Московского водопровода показала, что жесткость такой воды приблизительно равна 4 оЖ.

Согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» ПДК жесткости воды находится в диапазоне 7-10 градусов жесткости (оЖ).

Водородный показатель (pH)
Водородный показатель или рН представляет собой логарифм концентрации ионов водорода, взятый с обратным знаком, т.е. pH = -log.

Величина рН определяется количественным соотношением в воде ионов Н+ и ОН-, образующихся при диссоциации воды. Если ионы ОН- в воде преобладают — то есть рН>7, то вода будет иметь щелочную реакцию, а при повышенном содержании ионов Н+ — рН

В зависимости от уровня рН воды можно условно разделить на несколько групп:

сильнокислые воды < 3 кислые воды 3 — 5 слабокислые воды 5 — 6.5 нейтральные воды 6.5 — 7.5 слабощелочные воды 7.5 — 8.5 щелочные воды 8.5 — 9.5 сильнощелочные воды > 9.5

В зависимости от величины pH может изменяться скорость протекания химических реакций, степень коррозионной агрессивности воды, токсичность загрязняющих веществ и многое другое.

Обычно уровень рН находится в пределах, при которых он не влияет на потребительские качества воды. В речных водах pH обычно находится в пределах 6.5-8.5, в болотах вода кислее за счет гуминовых кислот — там pH 5.5-6.0, в подземных водах pH обычно выше. При высоких уровнях (рН>11) вода приобретает характерную мылкость, неприятный запах, способна вызывать раздражение глаз и кожи. Низкий pH

Нефтепродукты
К сожалению, загрязнение воды нефтепродуктами — явление очень распространенное. Промышленные стоки, аварии при нефтеперевозке, стоки с АЗС и автотранспорта — все это приводит к загрязнению поверхностных водотоков. Добыча нефти ведет к значительному загрязнению грунтовых вод. Кроме того, грунтовые воды загрязняются и от фильтрации нефтепродуктов с поверхности.

Нефтепродукты опасны для здоровья и ухудшают органолептические качества воды — придают ей стойкий «нефтяной» запах.

Предельно допустимая концентрация нефтепродуктов в воде по СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» составляет 0,1 мг/дм3.

Мутность
Мутность воды вызвана присутствием тонкодисперсных взвесей органического и неорганического происхождения.

Взвешенные вещества попадают в воду в результате смыва твердых частичек (глины, песка, ила) верхнего покрова земли дождями или талыми водами во время сезонных паводков, а также в результате размыва русла рек. Как правило, мутность поверхностных вод значительно выше, чем мутность вод подземных. Наименьшая мутность водоемов наблюдается зимой, наибольшая — весной в период паводков и летом, в период дождей и развития мельчайших живых организмов и водорослей, плавающих в воде. В проточной воде мутность, как правило, меньше.

Мутность воды может быть вызвана самыми разнообразными причинами — присутствием карбонатов, гидроксидов алюминия, высокомолекулярных органических примесей гумусового происхождения, появлением фито- и изопланктона, а также окислением соединений железа и марганца кислородом воздуха.

Высокая мутность является признаком наличия в воде неких примесей, возможно токсичных, кроме того, в мутной воде лучше развиваются различные микроорганизмы. В России мутность воды определяют фотометрическим путем сравнения проб исследуемой воды со стандартными суспензиями. Результат измерений выражают в мг/дм3 при использовании основной стандартной суспензии каолина или в ЕМ/дм3 (единицы мутности на дм3) при использовании основной стандартной суспензии формазина.

Согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» мутность воды должна находиться в диапазоне 2,6-3,5 ЕМ/дм3.

Цветность
Цветность — показатель качества воды, характеризующий интенсивность окраски и обусловленный содержанием окрашенных соединений; выражается в градусах по специальной шкале.

Цветность природных вод обусловлена главным образом присутствием гумусовых веществ и соединений трехвалентного железа. Концентрация этих веществ зависит от геологических условий, водоносных горизонтов, характера почв, наличия болот и торфяников в бассейне реки и т.п. Чем больше гумусовых веществ, тем выше цветность.

Сточные воды некоторых предприятий также могут создавать довольно интенсивную окраску воды.

Цветность природных вод колеблется от единиц до тысяч градусов. Предельное значение цветности для питьевой воды — 30 градусов.

Бытовое и химическое понимание цветности не всегда совпадает. Вода может быть почти оранжевой от оксидов железа, но это считается не цветностью, а мутностью, и отфильтровывается обычным бумажным фильтром.

Высокая цветность воды ухудшает ее органолептические свойства и оказывает отрицательное влияние на развитие водных растительных и животных организмов в результате резкого снижения концентрации растворенного кислорода в воде, который расходуется на окисление соединений железа и гумусовых веществ. Но сам по себе показатель цветности не говорит о характере загрязнения, но если он высокий, значит какое-то загрязнение есть.

Привкус
Вкус воды определяется растворенными в ней веществами органического и неорганического происхождения и различается по характеру и интенсивности.

Различают четыре основных вида вкуса: соленый, кислый, сладкий, горький. Все другие виды вкусовых ощущений называются привкусами (щелочной, металлический, вяжущий и т.п.).

Привкус вызывают самые разные примеси — соли, органические соединения, ионы металлов. Наличие привкуса свидетельствует о загрязнении воды каким-то веществом или веществами.

Привкус, как и запах — органолептический показатель. Интенсивность вкуса и привкуса определяют при 20оС и оценивают по пятибалльной системе:
Вкус и привкус не ощущаются 0
Вкус и привкус не ощущаются потребителем, но обнаруживаются при лабораторном исследовании 1
Вкус и привкус замечаются потребителем, если обратить на это его внимание 2
Вкус и привкус легко замечаются и вызывают неодобрительный отзыв о воде 3
Вкус и привкус обращают на себя внимание и заставляют воздержаться от питья 4
Вкус и привкус настолько сильные, что делают воду непригодной к употреблению 5

Нормативами допускается привкус 2, максимум 3 балла.

Запах
Химически чистая дистилированная вода лишена вкуса и запаха. Однако в природе такая вода не встречается — она всегда содержит в своем составе растворенные вещества — органические или минеральные. В зависимости от состава и концентрации примесей вода начинает принимать тот или иной привкус или запах.

Причины появления запаха у воды могут быть самыми разными. Это и присутствие в воде биологических частиц — гниющих растений, плесневых грибков, простейших (особенно заметны железистые и сернистые бактерии), и минеральные загрязнители. Сильно ухудшает запах воды антропогенное загрязнение — например, попадание в воду пестицидов, промышленных и бытовых стоков, хлора.

Запах относится к так называемым органолептическим показателям и измеряется без помощи каких-либо приборов. Интенсивность запаха воды определяют экспертным путем при 20оС и 60оС и измеряют в баллах:
Запах не ощущается 0
Запах не ощущается потребителем, но обнаруживается при лабораторном исследовании 1
Запах замечается потребителем, если обратить на это его внимание 2
Запах легко замечается и вызывает неодобрительный отзыв о воде 3
Запах обращает на себя внимание и заставляет воздержаться от питья 4
Запах настолько сильный, что делает воду непригодной к употреблению 5

Нормативами допускается запах в 2, максимум 3 балла.

Перманганатная окисляемость
Окисляемость — это величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых (при определенных условиях) одним из сильных химических окислителей. Этот показатель отражает общую концентрацию органики в воде. Природа органических веществ может быть самой разной — и гуминовые кислоты почв, и сложная органика растений, и химические соединения антропогенного происхождения. Для определения конкретных соединений используются другие методы.

Перманганатная окисляемость выражается в миллиграммах кислорода, пошедшего на окисление этих веществ, содержащихся в 1 дм3 воды.

Различают несколько видов окисляемости воды: перманганатную, бихроматную, иодатную. Наиболее высокая степень окисления достигается бихроматным методом. В практике водоочистки для природных малозагрязненных вод определяют перманганатную окисляемость, а в более загрязненных водах — как правило, бихроматную окисляемость (ХПК — «химическое потребление кислорода»).

Величина окисляемости природных вод может варьироваться в широких пределах от долей миллиграммов до десятков миллиграммов О2 на литр воды. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными. Это понятно — органика из почвы и растительного опада легче попадает в поверхностные воды, чем в грунтовые, чаще всего ограниченные глинистыми водоупорами. Вода равнинных рек как правило имеет окисляемость 5-12 мг О2 /дм3, рек с болотным питанием — десятки миллиграммов на 1 дм3. Подземные воды имеют в среднем окисляемость на уровне от сотых до десятых долей миллиграма О2 /дм3. Хотя подземные воды в районах нефтегазовых месторождений, и торфянников могут иметь очень высокую окисляемость.

ПДК питьевой воды по перманганатной окисляемости согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 5,0-7,0 мг/дм3.

Аммиак (NH3)
Аммиак — органическое соединение с характерным запахом. Является загрязнителем как природных, так и промышленных вод. Аммиак присутствует в стоках животноводческих комплексов и некоторых промышленных производств. Может попадать в воду при технологических нарушения процесса аммонизации — обработки питьевой воды аммиаком за несколько секунд до хлорирования для обеспечения более длительного обеззараживающего эффекта.

Как правило, концнентрации аммиака в воде не достигают опасных значений, но он вступает в реакцию с другими соединениями, в результате чего возникают более токсичные вещества.

ПДК аммиака в воде 2,0 мг/дм3

Сульфаты (+SO4)
Сульфаты присутствуют практически во всех поверхностных водах. Главным естественным источником сульфатов являются процессы химического выветривания и растворения серосодержащих минералов, в основном гипса, а также окисления сульфидов и серы. Значительные количества сульфатов поступают в водоемы в процессе отмирания живых организмов, окисления наземных и водных веществ растительного и животного происхождения.

Из антропогенных источников сульфатов в первую очередь надо упомянуть шахтные воды и в промышленные стоки производств, в которых используется серная кислота. Сульфаты выносятся также со сточными водами коммунального хозяйства и сельскохозяйственного производства.

Сульфаты участвуют в круговороте серы. При отсутствии кислорода под действием бактерий они восстанавливаются до сероводорода и сульфидов, которые при появлении в природной воде кислорода снова окисляются до сульфатов. Растения и бактерии извлекают растворенные в воде сульфаты для построения белкового вещества. После отмирания живых клеток в процессе разложения сера протеинов выделяется в виде сероводорода, легко окисляемого до сульфатов в присутствии кислорода.

Повышенные содержания сульфатов ухудшают органолептические свойства воды и оказывают физиологическое воздействие на организм человека – они обладают слабительными свойствами.

Сульфаты в присутствии кальция способны образовывать накипь, так что их содержание строго регламентируется и в технических водах.

ПДК сульфатов согласно СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества» — 500 мг/дм3

Хлориды (+Cl; +Cl2)
Почти все природные воды, дождевая вода, сточные воды содержат хлорид-ионы. Их концентрации меняются в широких пределах от нескольких миллиграммов на литр до довольно высоких концентраций в морской воде. Присутствие хлоридов объясняется присутствием в породах наиболее распространенной на Земле соли – хлорида натрия. Повышенное содержание хлоридов объясняется загрязнением водоема сточными водами.

ПДК хлоридов в воде согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников» составляет 350 мг/дм3

Фториды (+Fn)
Фториды входят в состав минералов — солей фтора, находящихся в почвах и в горных породах. При их растворении образуются фториды, которые и поступают в воду. Фториды присутствуют почти во всех источниках воды, но в различной концентрации.

Как недостаток, так и избыток фтора могут приводить к серьезным заболеваниям, поэтому содержание фторидов в воде должно контролироваться. В основном, повышенная концентрация фторидов встречается в подземных водах.

Согласно СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников » ПДК фторидов — 1,5 мг/дм3

Сульфиды (сероводород) (+S;+HS)
Сульфиды — природные сернистые соединения металлов и некоторых неметаллов. В химическом отношении рассматриваются как соли сероводородной кислоты H2S. ПДК в питьевой воде 0,003 мг/дм3

Общая минерализация
Общая минерализация — суммарный количественный показатель содержания растворенных в воде веществ. Этот параметр также называют содержанием растворимых веществ или общим солесодержанием, так как растворенные в воде вещества как правило находятся именно в виде солей. К числу наиболее распространенных относятся неорганические соли (в основном бикарбонаты, хлориды и сульфаты кальция, магния, калия и натрия) и небольшое количество органических веществ, растворимых в воде.

Не стоит путать минерализацию с сухим остатком. Методика определения сухого остатка такова, что летучие органические соединения, растворенные в воде, не учитываются. Общая минерализация и сухой остаток могут отличаться на небольшую величину (как, правило, не более 10%).

Уровень солесодержания в питьевой воде обусловлен качеством воды в природных источниках (которые существенно варьируются в разных геологических регионах вследствие различной растворимости минералов). Вода Подмосковья не отличается особенно высокой минерализацией, хотя в тех водотоках, которые расположены в местах выхода легкорастворимых карбонтных пород, минерализация может повышаться.

В зависимости от минерализации (мг/дм3 = мг/л) природные воды можно разделить на следующие категории:

Ультрапресные < 0.2 Пресные 0.2 — 0.5 Воды с относительно повышенной минерализацией 0.5 — 1.0 Солоноватые 1.0 — 3.0 Соленые 3 — 10 Воды повышенной солености 10 — 35 Рассолы > 35

Кроме природных факторов, на общую минерализацию воды большое влияние оказывают промышленные сточные воды, городские ливневые стоки (когда соль используется для борьбы с обледенением дорог) и т.п.

Хорошим считается вкус воды при общем солесодержании до 600 мг/л. По органолептическим показаниям ВОЗ рекомендован верхний предел минерализации в 1000 мг/дм3 (т.е до нижней границы солоноватых вод). Минеральные воды с определенным содержанием солей полезны для здоровья, но врачи рекомендуют употреблять их в ограниченных количествах. С другой стороны, ультрапресная, дистилированная вода, получающаяся в результате очистки воды методом обратного осмоса, тоже не очень полезна для здоровья — многие врачи считают, что ее постоянное употребление приводит к нарушениею солевого баланса и вымыванию из организма необходимых химических веществ.

Российские нормативы допускают минерализацию 1000-1500 мг/дм3

Для технической воды нормы минерализации строже, чем для питьевой, так как даже относительно небольшие концентрации солей портят оборудование, оседают на стенках труб и засоряют их.

В воде подземных источников встречаются нитриты и нитраты почвенного происхождения. Особенно это касается источников нецентрализованного водоснабжения, например шахтных колодцев. Нитриты более токсичны, чем нитраты, но в обычных условиях нитриты очень нестойкие вещества: окисляясь, они быстро переходят в нитраты. Нитраты, как более устойчивые соединения имеют гигиенический норматив в питьевой воде на уровне 45 мг/л.

Воздействие нитратов и нитритов на организм проявляется в изменении работы сердечно-сосудистой и выделительной систем, а также органов желудочно-кишечного тракта.

В организме нитраты под воздействием кишечной микрофлоры восстанавливаются до нитритов. Нитриты в свою очередь, соединяясь с гемоглобином, образуют стойкое соединение метгемоглобин, в результате резко снижается его способность к транспорту кислорода и наступает гипоксия тканей. Развивается заболевание, именуемое нитратной метгемоглобинемией. У заболевших нитратной метгемоглобинемией наблюдается предшествующие этому состоянию снижение кислотности желудочного сока и развитие диспепсических явлений.

Вспышки этого заболевания, по большей части среди детей, были отмечены по всему миру в регионах с повышенным содержанием в воде нитратов. Все заболевшие дети пили воду с содержанием в ней нитратов от 18 до 257 мг/л (в России ПДК нитратов - 45 мг/л). Содержание нитратов в питьевой воде, в три и более раз превышающее норму, имеет место в Ростовской, Липецкой, Брянской, Тульской и Воронежской области. Содержание нитратов в питьевой воде, в три и более раз превышающее норму, имеет место в Ростовской, Липецкой, Брянской, Тульской и Воронежской области.

Нитраты могут поступать в водоисточники со сточными водами городов и при смыве азотных удобрений с сельскохозяйственных полей. Нитраты практически не удаляются из воды во время обработки её на водопроводных станциях.

Есть еще одна сторона поведения нитросоединений в организме. Нитраты, как отмечалось выше довольно легко превращаются в нитриты, те в свою очередь, соединяются с поступающими вместе с пищей аминами и амидами. В результате образуются нитрозамины с выраженными канцерогенными свойствами. Этот процесс активно протекает при нормальной кислотности в желудке. Нитразамины оказывают также токсическое действие на печень, а некоторые из них обладают мутагенными и тератогенными свойствами.

В соответствии с требованиями глобальной системы мониторинга состояния окружающей среды (ГСМОС/GEMS) нитрит и нитрат - ионы входят в программы обязательных наблюдений за составом питьевой воды и являются важными показателями степени загрязнения природного водоема.

Одним из наиболее эффективных способов профилактики неблагоприятного действия нитратов на человека является их гигиеническое регламентирование в воде .

Фенолы - весьма распространенный вид загрязнений промышленных сточных вод. Они встречаются в сточных водах производств, связанных с тепловой переработкой древесины, сланцев, торфа, бурых и каменных углей (например, коксохимические заводы, газогенераторные станции); в сточных водах нефтеперерабатывающих заводов, заводов пластмасс, искусственных смол, лесохимических заводов, заводов органических красителей, древесностружечных плит, обогатительных фабрик цветной металлургии и др.

Фенолы - токсичные соединения, способные даже при небольшой концентрации резко ухудшать качество воды. В токсикологическом и органолептическом отношении фенолы неравноценны. Например, простой фенол и крезолы (метилфенолы) обладают более сильным запахом при хлорировании и более токсичны. Предельно допустимая концентрация (ПДК) в питьевой воде и воде рыбохозяйственных водоёмов составляет 1 мкг/л. При хлорировании содержащей фенолы воды образуются устойчивые хлорфенолы, малейшие следы которых придают воде неприятный привкус и запах. К счастью, фенолы химически нестойки, но в воде они разрушаются с разной скоростью: быстрее всех - собственно фенол, медленнее - крезолы, ещё медленнее - ксиленолы (демитилфенолы). Поэтому ПДК по разным фенолам различаются на несколько порядков.

Высокая концентрация фенола постоянно регистрируется в воде поверхностных водоисточников, в том числе: в бассейнах Невы (4 - 5 мкг/л), Волги (2 - 5 мкг/л) и других реках и водоемах. ПДК фенола в воде водоемов санитарно-бытового назначения составляет 1 мкг/л (по органолептическому показателю). Особенно высокой становится концентрация фенола в воде в случае аварийных ситуаций. Так, содержание фенола в водоисточнике Уфы в результате попадания промышленных сточных вод превысило ПДК в десятки раз.

Попадание фенола внутрь организма с питьевой водой, приводит к развитию язвенной болезни, атрофии мышц, нарушению координации движений, кровотечениям, вызвать язвы во рту или спровоцировать диарею; высокие дозы могут привести к необратимым последствиям.

Кроме этого, ученые установили, что именно фенол является причиной возникновения раковых заболеваний, способствует развитию сердечной недостаточности и бесплодия .

Тяжелые металлы, попадая в наш организм, остаются там навсегда, вывести их можно только с помощью белков молока и белых грибов. Достигая определенной концентрации в организме, они начинают свое губительное воздействие -- вызывают отравления, мутации. Кроме того, что сами они отравляют организм человека, они еще и чисто механически засоряют его -- ионы тяжелых металлов оседают на стенках тончайших систем организма и засоряют почечные каналы, каналы печени, таким образом, снижая фильтрационную способность этих органов.

Соответственно, это приводит к накоплению токсинов и продуктов жизнедеятельности клеток нашего организма, т.е. самоотравление организма, т.к. именно печень отвечает за переработку ядовитых веществ, попадающих в наш организм, и продуктов жизнедеятельности организма, а почки -- за их выведение наружу. К тяжелым металлам относятся Pb (свинец), Mn (марганец), Fe (железо), Zn (цинк), Hg (ртуть), Cd (кадмий).

Марганец забивает канальцы нервных клеток. Снижается проводимость нервного импульса, как следствие повышается утомляемость, сонливость, снижается быстрота реакции, работоспособность, появляются головокружение, депрессивные, подавленные состояния. Особенно опасны отравления марганцем у детей и эмбрионов (когда женщина беременна) -- приводит к идиотии. Из 100 детей, матери которых во время беременности подверглись отравлению марганцем, 96-98 рождаются идиотами. Есть также теория, что токсикозы на ранних и поздних сроках беременности вызываются марганцем. Марганец почти невозможно вывести из организма; очень тяжело диагностировать отравление марганцем, т.к. симптомы очень общие и присущи многим заболеваниям, чаще же всего человек просто не обращает на них внимания.

Железо бывает в природе в трех состояниях -- молекулярное железо Fе, Fe 2+ -- необходимо в организме человека как переносчик кислорода (в молекуле гемоглобина 4 иона Fе 2+) и Fе 3+ -- вредное для человека -- оно и есть ржавчина. Железо необходимо организму человека, но только в определенной пропорции и в виде иона Fе 2+ .

Алюминий также оказывает общее отравляющее и засоряющее действие на организм человека. В водопроводной воде его избыток связан с тем, что излишки железа на водозаборе удаляют сульфатом алюминия. Реагируя с ионами железа, сульфат алюминия дает нерастворимый осадок, в который выпадает, в принципе и железо, и алюминий, но в реальности в воде остается и железо, и алюминий. Алюминий, накапливаясь в организме, может стать причиной старческого слабоумия, повышенной возбудимости, вызвать нарушения моторных реакций у детей, анемию, головные боли, заболевание почек, печени, колиты, неврологические изменения, связанные с болезнью Паркинсона.

Селен необходим человеку в очень малых дозах, при малейшем превышении дозы он превращается в канцероген, мутаген и токсин.

Кобальт. Даже его малая концентрация в организме приводит к анемии, эндемическому зобу, недостаточному синтезу или вообще отсутствию витамина В 12 , так как при большой концентрации этого металла угнетается выработка вышеназванного витамина. А без В 12 прекратится рост, нарушится нормальное кроветворение, созревание эритроцитов, синтез лабильных метильных групп, накопление в эритроцитах соединений, которые содержат сульфгидрильные группы и образование холина, метионина, креатина, нуклеиновых кислот. Так же без него прекратит нормально функционировать печень и нервная система.

Медь. При малых концентрациях возможны анемия и заболевания костной системы, а избыток этого элемента таблицы Менделеева поражает печень, вызывая желтуху.

Цинк, так же называется «двуликим Янусом». Является стимулятором деления клеток и заживления поражённых тканей, а так же способствует образованию раковых клеток.

Но цинк, как и магний, хром и ванадий снижают уровень холестерина в крови, кадмий повышает кровяное давление, а недостаток меди сказывается на эластичности сосудов.

Кадмий - как бомба замедленного действия. В организме человека этот химический элемент накапливается в почках, при его избытке развивается болезнь «итай-итай» - искривление и деформация костей, сопровождающиеся сильными болями, необычайной хрупкостью и ломкостью костей, вызывает гипертонию, ослабляет иммунитет организма, оказывает негативное воздействие на умственные способности человека, т.к. вытесняет необходимый для нормальной работы мозга цинк.

Ртуть - возникают нервно-психические нарушения, головокружения, постоянные головные боли, снижается память, расстраивается речь, возникает скованность и общая заторможенность. Наиболее тяжёлые случаи заканчивались полной слепотой, параличом, безумием и смертью.

Свинец, - поступает в кровь и соединяется с эритроцитами, что приводит к отравлению крови и всего организма. Скапливается в костях.

Мышьяк - широко известный металл, который широко применялся для отравления королей, царей и царственных особ. Также употребляется для травли крыс и мышей. Вызывает эндемический зоб из-за накопления в щитовидной железе. При отравлении вызывает боли в животе, рвоту, понос, угнетение центральной нервной системы. В малых дозах обладает канцерогенным эффектом.

Cурьма - обладает кумулятивным и раздражающим действием. Целевой орган - щитовидная железа, сурьма накапливается в ней и вызывает эндемический зоб.

Хром - при хроническом отравлении хромом наблюдаются головные боли, исхудание, воспалительные изменения слизистой желудка и кишечника. Хромовые соединения вызывают различные кожные заболевания, дерматиты и экземы, протекающие остро и хронически и носят пузырьковый, папулезный, гнойничковый или узелковый характер. Соединения трехвалентного хрома вызывают дерматиты. Соединения шестивалентного хрома приводят преимущественно к онкологическим заболеваниям.

Увеличение концентрации тяжёлых металлов в воде увеличивает число мутаций, передающихся по наследству .